Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays
نویسندگان
چکیده
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
منابع مشابه
ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملDecentralized Model Reference Adaptive Control of Large Scale Interconnected Systems with Time-Delays in States and Inputs
This paper investigates the problem of decentralized model reference adaptive control (MRAC) for a class of large scale systems with time varying delays in interconnected terms and state and input delays. The upper bounds of the interconnection terms are considered to be unknown. Time varying delays in the nonlinear interconnection terms are bounded and nonnegative continuous functions and thei...
متن کاملAdaptive Observer-Based Decentralized Scheme for Robust Nonlinear Power Flow Control Using HPFC
This paper investigates the robust decentralized nonlinear control of power flow in a power system using a new configuration of UPFC. This structure comprises two shunt converters and one series capacitor called as hybrid power flow controller (HPFC). A controller is designed via control Lyapunov function (CLF) and adaptive observer to surmount the problems of stability such as tracking desired...
متن کامل